Schrift größer | Schrift kleiner
Suchfunktion


 
 

Navigation

Differentialgleichungen - Verwendung

Allgemein:
Das Lösen von Differentialgleichungen  ist eines der wichtigsten Kapitel nicht nur in der Mathematik, sondern auch in den anderen Naturwissenschaften.
Grundsätzlich unterscheidet man nach gewöhnlicher und partieller Differentialgleichung, wobei die Zahl der auftretenden Variablen zur Unterscheidung verwendet wird: 

  • Gewöhnliche Differentialgleichung: die gesuchte Funtkion hängt nur von einer Variablen ab (y' = f(x))
  • Partielle Differentialgleichung: die gesuchte Funktion hängt von mehreren Funktionen bzw. Variablen ab (y' = f(x)·g(y))
Daneben existieren noch die Bernoulli-Differentialgleichungen (y' = f(x)y + h(x)yr) und die Ricatti-Differentialgleichungen (y' = f(x) + g(x)y + h(x)y)
 

Verwendung von Differentialgleichungen:
Differentialgleichungen werden uberall dort verwendet, wo die Änderung einer Größe von der gleichen  Größe selbst abhängt. 
Beispiele:

  • Die Funktion f beschreibt den Ort, dann beschreibt die f´ die Änderung des Ortes und das ist nichts anderes, als die Geschwindigkeit
  • Die Funktion f beschreibt die Größe eine Bevölkerung, dann beschreibt f´deren Änderung und das ist nichts anderes als das Bevölkerungswachstum
  • Allgemein beschreibt die Funktion f eine Größe und f´die Änderungsrate dieser Größe

Zusammengefasst können mit Differentialgleichungen wissenschaftliche Gesetze mathematisch formuliert werden und ermöglichen so Vorhersagen über
die Entwicklung der Größen im betrachten System.

Lösungsverfahren:
Die Lösung einer Differentialgleichung kann im Allgemeinen nicht durch die Gleichung selbst eindeutig bestimmt werden, sondern benötigt zusätzlich noch weitere Anfangs- oder Randwerte zu exakten Bestimmung. Daher ist es nicht möglich, eine allgemein gültige Lösungsmethodik anzugeben. Nur für gewöhnliche, integrable Differentialgleichungen existiert ein allgemeines Lösungsverfahren.
Folgende Lösungsverfahren sind möglich:

  • Für gewöhnliche Differentialgleichungen benutzt man die Umkehrung des Differenzierens, in dem man die Stammfunktion aufsucht und so die Differentialgleichung  integriert. Die Lösungsfunktion ist dann einfach die Stammfunktion der Differentialgleichung. Beispiel: f´(x) = 4, dann ist die Stammfunktion F(x) = 4x + C und somit die Lösung der Differentialgleichung.
  • Partielle Differentialgleichungen werden in erster Linie durch Trennung der Variablen und spätere Integration gelöst.



                                        WEITERFÜHRENDE INFORMATIONEN auf Lernort-MINT.de

 

.