Schrift größer | Schrift kleiner
Suchfunktion


 
 

Navigation

Kongruenzsätze Dreieck - Rechnen im Dreieck

Allgemeines:
Kongruenzsätze sind in der analytischen Geometrie ein wichtiges Hilfsmittel. Mithilfe der Kongruenzsätze lässt sich feststellen, ob zwei Flächen kongruent, d.h. deckungsgleich zueinander sind. Kongruente Figuren bzw. Flächen zu bestimmen, ist nicht nur eine mathematische Spielerei, sondern spielen auch in Alltag eine wichtige Rolle, beispielsweise bei Molekülflächen.
Im folgenden sollen die Kongruenzsätze "SSS", "WSW", "SWS" und "SSW" kurz vorgestellt werden.
 

Was bedeutet kongruent?
Kongruent bedeutet, dass zwei Flächen (also z.B. Dreiecke) durch Parallelverschiebung, Drehung oder Spiegelung ineinander überführt werden können. Kongruent auf "Dreiecke" zu beziehen heißt, Dreiecke, wenn Dreiecke zueinander gleich in Form und Fläche sind.
 

Der Kongruenzsatz SSS:
Dieser Kongruenzsatz ist der einfachste Kongruenzsatz bei Dreiecken. Wie bereits die meisten vermuten, steht der Buchstabe "S" für Seite. Somit bedeutet der SSS-Satz, dass zwei Dreiecke, bei denen alle Seiten gleich lang sind bzw. die jeweilige Seitenlänge übereinstimmt (also Seitenlänge a von Dreieck1 entspricht der Seitenlänge a von Dreieck 2 u.s.w), kongruent sind. Die beiden Dreiecke haben somit den gleichen Flächeninhalt und die gleichen Winkel.
 

Der Kongruenzsatz WSW:
Dieser Kongruenzsatz besagt, dass wenn zwei Dreiecke die gleiche Länge einer Seite und die gleiche Größe der zwei anliegenden Winkel haben, dann sind diese beiden Dreiecke zueinander kongruent.
 

Der Kongruenzsatz SWS:
Dieser Kongruenzsatz besagt, dass wenn bei zwei Dreiecken zwei Seitenlängen und der Winkel zwischen den beiden Seitenlängen gleich sind, dann sind diese beiden Dreiecke kongruent.
 

Der Kongruenzsatz SSW:
Dieser Kongruenzsatz besagt, dass wenn zwei Dreiecke in den Längen zweier Seiten und im Betrag des Winkels, der der längeren Seite gegenüberliegt, übereinstimmen, dann sind diese Dreiecke zueinander kongruent.
 

Beweis für die Kongruenzsätze:
Der einfachste Beweis (und wohl auch ein wenig umständlich) für die Kongruenzsätze ist, dass man auf einem Blatt Papier mit Zirkel und Lineal die Dreiecke (mit jeweils gegebenen Größen) zeichnet, die Dreiecke ausschneidet und versucht sie übereinander zu legen und zu ermitteln, ob sie kongruent sind (also deckungsgleich). Lernort-mint würde aber nicht für qualitativ hochwertige Aussagen stehen, wenn man die Beweisführung der Kongruenzsätze zeichnerisch mit Hilfe von Papier und Stift löst. 

  • Der SSS-Kongruenzssatz: Dieser Satz besagt, dass zwei Dreiecke, bei denen alle drei Seitenlängen übereinstimmen, kongruent bzw. flächengleich sind. Diesen Satz muss man sicher nicht Beweisen, denn wenn alle Seitenlängen übereinstimmen, stimmt natürlich auch die Fläche der beiden Dreiecke überein und sind damit kongruent.
  • Der WSW-Kongruenzsatz: Dazu stellt man sich zwei Dreiecke ABC und DEF vor, bei denen eine Seite gleich lang ist und die beiden Winkel, die an dieser Seite anliegen, ebenfalls gleich sind.

Beweisen lässt sich der WSW-Kongruenzsatz anschließend realtiv einfach, da man zeigen kann, dass jeweils zwei Seiten und der Winkel, der die beiden Seiten einschließt, gleich sind. Damit sind beide Dreiecke kongruent (SWS-Kongruenzsatz).

  • Die anderen Kongruenzsätze (SWS und WSW) lassen sich auf ähnliche Art und Weise einfach und leicht beweisen, all diese Beweisführungen würde aber die Dimension dieses Kapitels sprengen und wahrscheinlich auch unübersichtlich machen. Aus der Sicht von Lernort-Mint spielt die Anwendung eine wesentlich wichtigere Rolle, als den Satz wirklich zu beweisen. 


weiterführende Informationen auf Lernort-mint.de

.