Der Compton-Effekt ist eine der wichtigen Grundlagen der Quantenphysik bzw. Quantenmechanik und erklärt die Wechselwirkung von elektromagnetischer Strahlung (Photonen) mit freien Elektronen. Prinzipiell gibt es drei Möglichkeiten der Wechselwirkung:
Der Compton Effekt, benannt nach dem Physiker lässt sich mit den Ergebnissen des photoelektrischen Effekts herleiten. Demnach haben Photonen auch eine Energie und einen Impuls. Der darauf aufbauende Compton-Effekt weist nach, dass Photonen nach der Streuung an freien Elektronen eine geringere Frequenz bzw. eine höhere Wellenlänge aufweisen. Mit Hilfe des Compton Effektes lässt sich auch berechnen bzw. nachweisen, dass die Photonen (bevorzugt im Bereich der Röntgenstrahlung) eine bestimmte Energie bzw Impuls an die Elektronen abgegeben.
Der photoelektrische Effekt hat gezeigt, dass das Photon auch als Teilchen betrachtet werden kann und somit eine Energie und einen Impuls hat. Trifft ein Photon auf ein Elektron, so geht ein Teil seiner Energie und seines Impulses auf das Elektron über. Die Energieübertragung bewirkt eine Impulsverkleinerung und damit eine Frequenzverkleinerung.
Im Jahre 1922 untersuchte Arthur Compton die Streuung von hochenergetischer Röntgenstrahlung an Graphit, die Messungen zeigten dabei, dass sich die Wellenlänge der gestreuten Strahlung je nach Streuwinkel wie bei einem elastischen Stoß verhält. Die Wellenlänge der elektromagnetischen Strahlung, die den Graphit durchdrungen hat, weist eine Streuung auf. Die Wellenlänge der gestreuten Strahlung hängt dabei von der Streurichtung ab.