Addition von Vektoren – Die Vektoradditon

„Vektoren“ sind ein wichtiges Hilfsmittel der analytischen Geometrie und finden nicht nur in der Mathematik Einsatz, sondern auch in anderen Naturwissenschaften wie Physik (Bewegung) oder Chemie (Schwerpunkte von Molekülen). Mathematisch definiert sind Vektoren Objekte, die eine parallele Verschiebung in einem Raum oder einer Ebene beschreiben. Nichtmathematisch ausgedrückt ist ein Vektor ein Pfeil, der eine Richtung und eine Länge hat, wobei die Länge durch den Betrag des Vektors und die Richtung der Vektoren durch Spaltenvektoren angegeben wird.
Auch bei Vektoren sind mathematische Operationen möglich, wie z.B. die Addition oder Subtraktion von Vektoren.

Die Vektoraddition

Vereinfacht gesagt, entspricht die Vektoraddition der Aneinanderreihung von Vektoren. Vektoradditionen lassen sich grafisch und rechnerisch lösen. Bei der grafischen Lösung der Vektoraddition wird an die Spitze (Ende) des ersten Vektors der Schaft (Anfang) des zweiten Vektors gesetzt.

Die Vektoraddition

Die Vektoraddition

Anschließend soll noch kurz das mathematische Verfahren zur Addition von Vektoren erläutert werden. Dabei ist die Addition von Vektoren relativ einfach. Die einzelnen x-Werte und y-Werte (und z-Werte) werden miteinander addiert.

Addition von Vektoren

Addition von Vektoren

Berechnung der Länge eines (aus der Addition von Vektoren resultierenden) Vektors

Der Betrag eines Vektors ist eine sog. skalare Größe und  hat immer einen positiven Wert. Einzige Ausnahme: es handelt sich um einen Nullvektor (Betrag gleich Null). Geometrisch ausgedrückt ist der Betrag eines Vektors gleich der Länge des Vektors.

Berechnung der Länge eines Vektors

Berechnung der Länge eines Vektors

Hergeleitet werden kann die Formel mit Hilfe des Satzes des Pythagoras. Wie in der Skizze erkennbar ist, sind die  x-Komponente und y-Komponente des Vektors a die Katheten eines Dreiecks. Die Länge (der Betrag) des Vektors entspricht der Hypotenuse. Somit kann man mit Hilfe des Satzes des Pythagoras (a² + b² = c²) die Länge der Hypotenuse berechnen. Im Dreidimensionalen kommt noch die z-Komponente dazu.