Das Superpositionsprinzip wird gerne in der Mechanik angewandt (aber nicht nur dort, z.B. die Überlagerung von Wellen in der Optik). Dabei erfolgt eine vektorielle Addition von Kräften zu resultierenden Kräften (dies ist auch unter dem Kräfteparallelogramm bekannt). Wichtig ist aber, dass die Größen, die addiert werden, eine Linearität der zugrunde liegenden Gleichungen aufweisen (z.B. Kraft -> F = m·a, linearer Zusammenhang).
Einfach gesagt, ist das Superpositionsprinzip in der Mechanik nichts anders als eine Überlagerung von vektoriellen Größen (d.h. eine Größe, die eine Richtung um einen Betrag hat, wie z.B. Kräfte). Dabei werden die einzelnen Vektoren zu einem resultierenden Vektor addiert.
Wie bereits im allgemeinen Teil erwähnt, befasst sich das Fachgebiet Mechanik mit der Bewegung von Körpern und der Einwirkung von Kräften und stellt z.B. durch die Newtonschen Gesetze den Zusammenhang zwischen Bewegungen einer Masse und den wirkenden Kräften her. In der oben gezeigten Formel für die Kraft (F = m·a) erkennt man, dass eine Linearität der gegeben ist, womit das Superpositionsprinzip angewendet werden kann.
Beispiel zum besseren Verständnis:
Ein Gegenstand wird mit einer Kraft F1 nach oben und mit einer Kraft F2 nach rechts gezogen.
Eine Anwendung des Superpositionsprinzips findet sich z.B. im schrägen Wurf, der sich aus einer gleichförmigen Bewegung und einer gleichförmig, beschleunigten Bewegung zusammensetzt. Dabei versucht man zunächst die einzelnen Bewegungen zu bestimmen und setzt sie dann anschließend additiv zu einer Gesamtbewegung zusammen.