Schrift größer | Schrift kleiner
Suchfunktion


 
 

Navigation

Die Produktregel bzw. Quotientenregel für Ableitungen

Allgemein
Ganz einfach gesagt: Die Differentialrechnung untersucht das Steigungsverhalten von (Funktions)Graphen. So kann man auch die Ableitung auf einen Graphen übertragen, die (1.) Ableitung einer Funktion bzw. eines Graphen ist deren Steigungsverhalten (also, wie verändert sich der Graph). Der Sinn von Ableitungen ist in der Regel nicht das Lösen von Gleichungen, sondern Funktion bzw. Graphen charakterisieren zu können (z.B. "Extrempunkte (Hoch- oder Tiefpunkt)"). Die 2. Ableitung gibt an, wie "gekrümmt" die Funktion ist. Weiteren Ableitungen sind für die Charakterisierung der Ausgangsfunktion nicht mehr aussagekräftig bzw. ohne Bedeutung.

Ableitungen werden überall dort verwendet, wo die Änderung einer Größe von der gleichen Größe selbst abhängt. 
Beispiele:

  • Die Funktion f beschreibt den Ort, dann beschreibt die f´ die Änderung des Ortes und das ist nichts anderes, als die Geschwindigkeit
  • Die Funktion f beschreibt die Größe eine Bevölkerung, dann beschreibt f´deren Änderung und das ist nichts anderes als das Bevölkerungswachstum. Allgemein beschreibt die Funktion f eine Größe und f´die Änderungsrate dieser Größe


Wie funktioniert"Differenzieren" (Ableiten)?:
Zum Differenzieren von Funktionen kann man die Potenz- (f(x) =a·xn) bzw. Summenregel (f(x) =a·xn + b·xm) für einfache Funktionen verwenden. Für schwierigere Fälle benötigt man die Produkt- bzw. Quotientenregel (f(x) = u(x) · v(x)), manchmal auch die Kettenregel (f(x) = (x + b)n). Daneben gibt es noch einzelne Funktionen, deren Ableitung (Lösung) man auswendig lernen muss. 
 

Die Anwendung der Produktregel:
Wie in der Einleitung beschrieben, ist die Produktregel in der Mathematik eine der Grundregeln der Differentialrechnung und dient zum Ableiten von einfachen Funktionen des Typs: f(x) = f(x) = u(x) · v(x). Die Produktregel führt die Ableitung eines Produktes von Funktionen auf das Modell der Ableitung der einzelnen Funktionen zurück und damit auf das Modell der Potenz- bzw. Summenregel. Man verwendet sie immer dann, wenn eine Funktion in der Form Term mit x" mal "Term mit x vorliegt.

Die der Produktregel zugrundeliegende Formel ist relativ einfach:

Eine der zwei Faktoren (u(x) oder (v(x) wird also jeweils abgeleitet und mit dem anderen Faktor (der nicht abgeleitet wurde) multipliziert.
Anschließend werden diese beiden Terme dann addiert. 
 

Die Produkregel lässt sich auch für die Produkte von drei Funktionsgliedern anwenden:

Die Anwendung der Quotientenregel:
Wie in der Einleitung beschrieben, ist die Quotientenregel in der Mathematik eine der Grundregeln der Differentialrechnung und dient zum Ableiten von einfachen Funktionen des Typs: f(x) = f(x) = u(x) : v(x). Man verwendet sie immer dann, wenn eine Funktion in der Form Term mit x" geteilt durch "Term mit x vorliegt. Die Verwendung dieser Ableitungsregel liegt wird also immer dann verwendet, wenn der Funktionsterm in Bruchform vorliegt und ermöglicht das Bilden einer Ableitung vom Quotienten zweier Funktionen.

Die der Quotientenregel zugrundeliegende Formel:

Anmerkung:

  • Angemerkt sei, dass sich die Quotienten- wie auch die Produktregel immer anwenden lassen. Jedoch ist es nicht immer sinnvoll, die Quotientenregel zu verwenden (wenn ein Bruchterm) vorliegt, da viele Funktionen sich leichter ableiten lassen (Gelegentlich kann durch Umformen erreicht werden, dass nur die Potenzregel benötigt wird). Beispiel: F(x) = 2 : x² = 2 · x-²


                                        WEITERFÜHRENDE INFORMATIONEN auf Lernort-MINT.de

 

.