Ganz einfach gesagt: Die Differentialrechnung untersucht das Steigungsverhalten von (Funktions)Graphen. So kann man auch die Ableitung auf einen Graphen übertragen, die (1.) Ableitung einer Funktion bzw. eines Graphen ist deren Steigungsverhalten (also, wie verändert sich der Graph). Der Sinn von Ableitungen ist in der Regel nicht das Lösen von Gleichungen, sondern Funktion bzw. Graphen charakterisieren zu können (z.B. “Extrempunkte (Hoch- oder Tiefpunkt)”). Die 2. Ableitung gibt an, wie “gekrümmt” die Funktion ist. Weiteren Ableitungen sind für die Charakterisierung der Ausgangsfunktion nicht mehr aussagekräftig bzw. ohne Bedeutung.
Ableitungen werden überall dort verwendet, wo die Änderung einer Größe von der gleichen Größe selbst abhängt.
Beispiele:
Zum Differenzieren von Funktionen kann man die Potenz- (f(x) =a·xn) bzw. Summenregel (f(x) =a·xn + b·xm) für einfache Funktionen verwenden. Für schwierigere Fälle benötigt man die Produkt- bzw. Quotientenregel (f(x) = u(x) · v(x)), manchmal auch die Kettenregel (f(x) = (x + b)n). Daneben gibt es noch einzelne Funktionen, deren Ableitung (Lösung) man auswendig lernen muss.
Wie in der Einleitung beschrieben, ist die Produktregel in der Mathematik eine der Grundregeln der Differentialrechnung und dient zum Ableiten von einfachen Funktionen des Typs: f(x) = f(x) = u(x) · v(x). Die Produktregel führt die Ableitung eines Produktes von Funktionen auf das Modell der Ableitung der einzelnen Funktionen zurück und damit auf das Modell der Potenz- bzw. Summenregel. Man verwendet sie immer dann, wenn eine Funktion in der Form Term mit x” mal “Term mit x vorliegt.
Die der Produktregel zugrundeliegende Formel ist relativ einfach:
Formel für die Produktregel
Die Produkregel lässt sich auch für die Produkte von drei Funktionsgliedern anwenden:
Anwendung der Produktregel
Die der Quotientenregel zugrundeliegende Formel:
Formel für die Quotientenregel