Das Lösen von Differentialgleichungen ist eines der wichtigsten Kapitel nicht nur in der Mathematik, sondern auch in den anderen Naturwissenschaften.
Grundsätzlich unterscheidet man nach gewöhnlicher und partieller Differentialgleichung, wobei die Zahl der auftretenden Variablen zur Unterscheidung verwendet wird:
Daneben existieren noch die Bernoulli-Differentialgleichungen (y’ = f(x)y + h(x)yr) und die Ricatti-Differentialgleichungen (y’ = f(x) + g(x)·y + h(x)y)
Die Lösung einer Differentialgleichung kann im Allgemeinen nicht durch die Gleichung selbst eindeutig bestimmt werden, sondern benötigt zusätzlich noch weitere Anfangs- oder Randwerte zu exakten Bestimmung. Daher ist es nicht möglich, eine allgemein gültige Lösungsmethodik anzugeben. Nur für gewöhnliche, integrable Differentialgleichungen existiert ein allgemeines Lösungsverfahren.
Folgende Lösungsverfahren sind möglich:
Wie oben schon beschrieben, hängt die gewöhnliche Differentialgleichung nur von einer Variablen ab (allgemein y’ = f(x)). Eine “lineare Differenzialgleichung” bedeutet, dass die gesuchte Funktion und deren Ableitungen nur in der ersten Potenz vorkommen und zusätzlich dürfen keine Produkte von gesuchter Funktion und ihren Ableitungen auftreten.
Beispiel: y´(x) + 2·y(x) = 0 (gewöhnliche lineare Funktion):
Diese Gleichung kann man auch als homogene, gewöhnliche lineare Differentialgleichung bezeichnen, denn ähnlich wie bei homogenen linearen Gleichungen liegt hier ein “mathematischer Ausdruck” der Form “a + b = 0” vor => homogen.
Im Grunde ist die Integration nichts anders als die umgekehrte Ableitung. Eine Möglichkeit, eine gewöhnliche lineare Differentialgleichung zu integrieren ist die sog. Potenzregel. Ziel der Potenzregel ist es, Funktionen der Form f'(x) = y´(x) = a·xn zu integrieren.
Allgemeine Formel
Eine Möglichkeit, eine gewöhnliche lineare Differentialgleichung zu integieren ist die sog. Summenregel. Ziel der Summenregel ist es, Funktionen der Form f'(x) = y´(x) = a·xn + b·xm + .. zu integrieren
Allgemeine Formel
Zuletzt sei noch kurz das Lösungsverfahren für DGL des Typs f'(x) = y´(x) = a bzw. DGL die ein Glied ohne Variable aufweisen:
Lösung einer Differentialgleichung
Die Lösung einer Differentialgleichung mithilfe der eben gezeigten Verfahren kann im Allgemeinen nicht die Gleichung selbst eindeutig bestimmen (deswegen C = Konstante), sondern benötigt zusätzlich noch weitere Anfangs- oder Randwerte zu exakten Bestimmung.
Beispiel: