Im Kapitel “Ableitung” von Funktion ist bereits erwähnt worden, dass der Hauptzweck von Ableitungen der Charakterisierung von Funktionen bzw. deren Graphen dient. Diese Untersuchungen von Funktionen sind wesentlicher Bestandteil der sog. Kurvendiskussion. Das Ziel dabei ist, die Eigenschaften einer Funktion herauszufinden, ohne diese graphisch lösen zu müssen (also zu zeichnen). Wichtige (zu bestimmende) Eigenschaften sind dabei: Extrempunkte, Wendepunkte, Nullstellen, Krümmungsverhalten und Symmetrie.
Die Untersuchung von Funktionen (Kurvendiskussion) ist nicht nur eine elementare mathematische Methode, sondern findet auch außerhalb der Mathematik breite Anwendung, z.B. in der Chemie: der Verlauf einer Reaktion lässt sich beschreiben. Aber nicht nur in den MINT-Fächern stößt man immer wieder auf die Notwendigkeit, Graphen zu untersuchen bzw. zu interpretieren. Bestes Beispiel ist z.B. die Berechnung des Break-Even (in wirtschaftlichen Fächern), oft handelt es sich dabei um komplizierte Funktionen mit deren Hilfe berechnet werden soll, ab welcher Stückzahl man Gewinn macht.
Nachfolgend finden sich einige Möglichkeiten, eine Funktion bzw. Graphen zu charakterisieren: